Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 277
1.
J Biol Chem ; 300(3): 105714, 2024 Mar.
Article En | MEDLINE | ID: mdl-38309502

Inhibition of protein kinase C (PKC) efficiently promoted the self-renewal of embryonic stem cells (ESCs). However, information about the function of PKC inhibition remains lacking. Here, RNA-sequencing showed that the addition of Go6983 significantly inhibited the expression of de novo methyltransferases (Dnmt3a and Dnmt3b) and their regulator Dnmt3l, resulting in global hypomethylation of DNA in mouse ESCs. Mechanistically, PR domain-containing 14 (Prdm14), a site-specific transcriptional activator, partially contributed to Go6983-mediated repression of Dnmt3 genes. Administration of Go6983 increased Prdm14 expression mainly through the inhibition of PKCδ. High constitutive expression of Prdm14 phenocopied the ability of Go6983 to maintain` mouse ESC stemness in the absence of self-renewal-promoting cytokines. In contrast, the knockdown of Prdm14 eliminated the response to PKC inhibition and substantially impaired the Go6983-induced resistance of mouse ESCs to differentiation. Furthermore, liquid chromatography-mass spectrometry profiling and Western blotting revealed low levels of Suv39h1 and Suv39h2 in Go6983-treated mouse ESCs. Suv39h enzymes are histone methyltransferases that recognize dimethylated and trimethylated histone H3K9 specifically and usually function as transcriptional repressors. Consistently, the inhibition of Suv39h1 by RNA interference or the addition of the selective inhibitor chaetocin increased Prdm14 expression. Moreover, chromatin immunoprecipitation assay showed that Go6983 treatment led to decreased enrichment of dimethylation and trimethylation of H3K9 at the Prdm14 promoter but increased RNA polymerase Ⅱ binding affinity. Together, our results provide novel insights into the pivotal association between PKC inhibition-mediated self-renewal and epigenetic changes, which will help us better understand the regulatory network of stem cell pluripotency.


DNA-Binding Proteins , Mouse Embryonic Stem Cells , Protein Kinase C , Animals , Mice , DNA Methylation , DNA-Binding Proteins/metabolism , Indoles/pharmacology , Maleimides/pharmacology , Mouse Embryonic Stem Cells/drug effects , Mouse Embryonic Stem Cells/enzymology , Mouse Embryonic Stem Cells/physiology , Protein Kinase C/genetics , Protein Kinase C/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Protein Kinase Inhibitors/pharmacology
2.
Int J Mol Sci ; 23(3)2022 Jan 20.
Article En | MEDLINE | ID: mdl-35163031

Organic semiconductors are constantly gaining interest in regenerative medicine. Their tunable physico-chemical properties, including electrical conductivity, are very promising for the control of stem-cell differentiation. However, their use for combined material-based and electrical stimulation remains largely underexplored. Therefore, we carried out a study on whether a platform based on the conductive polymer poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) can be beneficial to the differentiation of mouse embryonic stem cells (mESCs). The platform was prepared using the layout of a standard 24-well cell-culture plate. Polyethylene naphthalate foil served as the substrate for the preparation of interdigitated gold electrodes by physical vapor deposition. The PEDOT:PSS pattern was fabricated by precise screen printing over the gold electrodes. The PEDOT:PSS platform was able to produce higher electrical current with the pulsed-direct-current (DC) electrostimulation mode (1 Hz, 200 mV/mm, 100 ms pulse duration) compared to plain gold electrodes. There was a dominant capacitive component. In proof-of-concept experiments, mESCs were able to respond to such electrostimulation by membrane depolarization and elevation of cytosolic calcium. Further, the PEDOT:PSS platform was able to upregulate cardiomyogenesis and potentially inhibit early neurogenesis per se with minor contribution of electrostimulation. Hence, the present work highlights the large potential of PEDOT:PSS in regenerative medicine.


Bridged Bicyclo Compounds, Heterocyclic/chemistry , Cell Differentiation , Electric Conductivity , Mouse Embryonic Stem Cells/cytology , Polymers/pharmacology , Polystyrenes/chemistry , Animals , Cell Culture Techniques , Electrodes , Mice , Mouse Embryonic Stem Cells/drug effects , Polymers/chemistry
3.
Cells ; 11(2)2022 01 14.
Article En | MEDLINE | ID: mdl-35053393

Chimeric RNAs (chiRNAs) play many previously unrecognized roles in different diseases including cancer. They can not only be used as biomarkers for diagnosis and prognosis of various diseases but also serve as potential therapeutic targets. In order to better understand the roles of chiRNAs in pathogenesis, we inserted human sequences into mouse genome and established a knockin mouse model of the tamoxifen-inducible expression of ASTN2-PAPPA antisense chimeric RNA (A-PaschiRNA). Mice carrying the A-PaschiRNA knockin gene do not display any apparent abnormalities in growth, fertility, histological, hematopoietic, and biochemical indices. Using this model, we dissected the role of A-PaschiRNA in chemical carcinogen 4-nitroquinoline 1-oxide (4NQO)-induced carcinogenesis of esophageal squamous cell carcinoma (ESCC). To our knowledge, we are the first to generate a chiRNA knockin mouse model using the Cre-loxP system. The model could be used to explore the roles of chiRNA in pathogenesis and potential targeted therapies.


Gene Knock-In Techniques , RNA, Antisense/genetics , 4-Nitroquinoline-1-oxide , Animals , Body Weight/drug effects , Carcinogens/toxicity , Disease Models, Animal , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/pathology , Female , Genotype , Mice , Mice, Inbred C57BL , Mouse Embryonic Stem Cells/drug effects , Mouse Embryonic Stem Cells/metabolism , Quinolones , Tamoxifen/pharmacology
4.
Stem Cell Reports ; 17(2): 231-244, 2022 02 08.
Article En | MEDLINE | ID: mdl-35063128

The formation of the primitive streak (PS) and the subsequent induction of neuroectoderm are hallmarks of gastrulation. Combining an in vitro reconstitution of this process based on mouse embryonic stem cells (mESCs) with a collection of knockouts in reporter mESC lines, we identified retinoic acid (RA) as a critical mediator of early neural induction triggered by TGFß or Wnt signaling inhibition. Single-cell RNA sequencing analysis captured the temporal unfolding of cell type diversification, up to the emergence of somite and neural fates. In the absence of the RA-synthesizing enzyme Aldh1a2, a sensitive RA reporter revealed a hitherto unidentified residual RA signaling that specified neural fate. Genetic evidence showed that the RA-degrading enzyme Cyp26a1 protected PS-like cells from neural induction, even in the absence of TGFß and Wnt antagonists. Overall, we characterized a multi-layered control of RA levels that regulates early neural differentiation in an in vitro PS-like system.


Cell Differentiation/drug effects , Neurons/metabolism , Tretinoin/pharmacology , Aldehyde Dehydrogenase 1 Family/deficiency , Aldehyde Dehydrogenase 1 Family/genetics , Animals , Benzamides/pharmacology , Dioxoles/pharmacology , Ectoderm/cytology , Ectoderm/metabolism , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/drug effects , Mouse Embryonic Stem Cells/metabolism , Neurons/cytology , Primitive Streak/cytology , Primitive Streak/metabolism , Retinal Dehydrogenase/deficiency , Retinal Dehydrogenase/genetics , Retinoic Acid 4-Hydroxylase/metabolism , Signal Transduction/drug effects , Tretinoin/metabolism
5.
Biochem Biophys Res Commun ; 590: 97-102, 2022 01 29.
Article En | MEDLINE | ID: mdl-34973536

Assembly of pluripotent stem cells to initiate self-organized tissue formation on engineered scaffolds is an important process in stem cell engineering. Pluripotent stem cells are known to exist in diverse pluripotency states, with heterogeneous subpopulations exhibiting differential gene expression levels, but how such diverse pluripotency states orchestrate tissue formation is still an unrevealed question. In this study, using microstructured adhesion-limiting substrates, we aimed to clarify the contribution to self-organized layer formation by mouse embryonic stem cells in different pluripotency states: ground and naïve state. We found that while ground state cells as well as sorted REX1-high expression cells formed discontinuous cell layers with limited lateral spread, naïve state cells could successfully self-organize to form a continuous layer by progressive mesh closure within 3 days. Using sequential immunofluorescence microscopy to examine the mesh closure process, we found that KRT8+ cells were particularly localized around unfilled holes, occasionally bridging the holes in a manner suggestive of their role in the closure process. These results highlight that compared with ground state cells, naïve state cells possess a higher capability to contribute to self-organized layer formation by mesh closure. Thus, this study provides insights with implications for the application of stem cells in scaffold-based tissue engineering.


Mouse Embryonic Stem Cells/metabolism , Pluripotent Stem Cells/metabolism , Tissue Scaffolds/chemistry , Animals , Cell Adhesion/drug effects , Cell Line , Keratin-8/metabolism , Leukemia Inhibitory Factor/pharmacology , Mice , Mouse Embryonic Stem Cells/drug effects , Pluripotent Stem Cells/drug effects
6.
Int J Mol Sci ; 22(23)2021 Nov 30.
Article En | MEDLINE | ID: mdl-34884750

Cyclic siloxane octamethylcyclotetrasiloxane (D4) has raised concerns as an endocrine-disrupting chemical (EDC). D4 is widely used in detergent products, cosmetics, and personal care products. Recently, robust toxicological data for D4 has been reported, but the adverse effects of D4 on brain development are unknown. Here, pregnant mice on gestational day 9.5 were treated daily with D4 to postnatal day 28, and the offspring mice were studied. The prenatal D4-treated mice exhibited cognitive dysfunction, limited memory, and motor learning defect. Moreover, prenatal D4 exposure reduced the proliferation of neuronal progenitors in the offspring mouse brain. Next, the mechanisms through which D4 regulated the cell cycle were investigated. Aberrant gene expression, such as cyclin-dependent kinases CDK6 and cyclin-dependent kinase inhibitor p27, were found in the prenatal D4-treated mice. Furthermore, the estrogen receptors ERa and ERb were increased in the brain of prenatal D4-treated mice. Overall, these findings suggest that D4 exerts estrogen activity that affects the cell cycle progression of neuronal progenitor cells during neurodevelopment, which may be associated with cognitive deficits in offspring.


Endocrine Disruptors/toxicity , Neural Stem Cells/drug effects , Prenatal Exposure Delayed Effects/pathology , Prenatal Exposure Delayed Effects/physiopathology , Siloxanes/toxicity , Animals , Behavior, Animal/drug effects , Brain/drug effects , Brain/growth & development , Brain/pathology , Cell Cycle Proteins/metabolism , Cell Line , Cell Proliferation , Cognition/drug effects , Endocrine Disruptors/administration & dosage , Female , Gene Knock-In Techniques , Green Fluorescent Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Models, Neurological , Motor Activity/drug effects , Mouse Embryonic Stem Cells/drug effects , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/pathology , Neural Stem Cells/cytology , Neural Stem Cells/physiology , Neurogenesis/drug effects , Pregnancy , Prenatal Exposure Delayed Effects/psychology , SOXB1 Transcription Factors/genetics , Siloxanes/administration & dosage , Social Behavior
7.
Toxicol Appl Pharmacol ; 433: 115781, 2021 12 15.
Article En | MEDLINE | ID: mdl-34737147

The cardiac embryonic stem cell test (ESTc) is an in vitro embryotoxicity screen which uses cardiomyocyte formation as the main differentiation route. Studies are ongoing into whether an improved specification of the biological domain can broaden the applicability of the test, e.g. to discriminate between structurally similar chemicals by measuring expression of dedicated gene transcript biomarkers. We explored this with two chemical classes: morpholines (tridemorph; fenpropimorph) and piperidines (fenpropidin; spiroxamine). These compounds cause embryotoxicity in rat such as cleft palate. This malformation can be linked to interference with retinoic acid balance, neural crest (NC) cell migration, or cholesterol biosynthesis. Also neural differentiation within the ESTc was explored in relation to these compounds. Gene transcript expression of related biomarkers were measured at low and high concentrations on differentiation day 4 (DD4) and DD10. All compounds showed stimulating effects on the cholesterol biosynthesis related marker Msmo1 after 24 h exposure and tridemorph showed inhibition of Cyp26a1 which codes for one of the enzymes that metabolises retinoic acid. A longer exposure duration enhanced expression levels for differentiation markers for cardiomyocytes (Nkx2-5; Myh6) and neural cells (Tubb3) on DD10. This readout gave additional mechanistic insight which enabled previously unavailable in vitro discrimination between the compounds, showing the practical utility of specifying the biological domain of the ESTc.


Cell Differentiation/drug effects , Gene Expression Regulation, Developmental/drug effects , Morpholines/toxicity , Mouse Embryonic Stem Cells/drug effects , Myocytes, Cardiac/drug effects , Piperidines/toxicity , Toxicity Tests , Animals , Cells, Cultured , Gene Regulatory Networks , Homeobox Protein Nkx-2.5/genetics , Homeobox Protein Nkx-2.5/metabolism , Mice , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Retinoic Acid 4-Hydroxylase/genetics , Retinoic Acid 4-Hydroxylase/metabolism , Risk Assessment , Spiro Compounds/toxicity , Time Factors , Tubulin/genetics , Tubulin/metabolism
8.
Int J Mol Sci ; 22(22)2021 Nov 18.
Article En | MEDLINE | ID: mdl-34830336

Cleft lip with or without cleft palate (CL/P) is one of the most common congenital birth defects. This study aims to identify novel pathogenic microRNAs associated with cleft palate (CP). Through data analyses of miRNA-sequencing for developing palatal shelves of C57BL/6J mice, we found that miR-449a-3p, miR-449a-5p, miR-449b, miR-449c-3p, and miR-449c-5p were significantly upregulated, and that miR-19a-3p, miR-130a-3p, miR-301a-3p, and miR-486b-5p were significantly downregulated, at embryonic day E14.5 compared to E13.5. Among them, overexpression of the miR-449 family (miR-449a-3p, miR-449a-5p, miR-449b, miR-449c-3p, and miR-449c-5p) and miR-486b-5p resulted in reduced cell proliferation in primary mouse embryonic palatal mesenchymal (MEPM) cells and mouse cranial neural crest cell line O9-1. On the other hand, inhibitors of miR-130a-3p and miR-301a-3p significantly reduced cell proliferation in MEPM and O9-1 cells. Notably, we found that treatment with dexamethasone, a glucocorticoid known to induce CP in mice, suppressed miR-130a-3p expression in both MEPM and O9-1 cells. Moreover, a miR-130a-3p mimic could ameliorate the cell proliferation defect induced by dexamethasone through normalization of Slc24a2 expression. Taken together, our results suggest that miR-130-3p plays a crucial role in dexamethasone-induced CP in mice.


Cleft Palate/genetics , Dexamethasone/pharmacology , Glucocorticoids/pharmacology , MicroRNAs/genetics , Mouse Embryonic Stem Cells/drug effects , Animals , Antagomirs/genetics , Antagomirs/metabolism , Cell Line , Cell Proliferation/drug effects , Cleft Palate/chemically induced , Cleft Palate/metabolism , Cleft Palate/pathology , Disease Models, Animal , Embryo, Mammalian , Gene Expression Regulation , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/antagonists & inhibitors , MicroRNAs/classification , MicroRNAs/metabolism , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Neural Crest/cytology , Neural Crest/drug effects , Neural Crest/metabolism , Primary Cell Culture , Signal Transduction , Sodium-Calcium Exchanger/genetics , Sodium-Calcium Exchanger/metabolism
9.
Nucleic Acids Res ; 49(20): 11575-11595, 2021 11 18.
Article En | MEDLINE | ID: mdl-34723340

Signaling pathway-driven target gene transcription is critical for fate determination of embryonic stem cells (ESCs), but enhancer-dependent transcriptional regulation in these processes remains poorly understood. Here, we report enhancer architecture-dependent multilayered transcriptional regulation at the Halr1-Hoxa1 locus that orchestrates retinoic acid (RA) signaling-induced early lineage differentiation of ESCs. We show that both homeobox A1 (Hoxa1) and Hoxa adjacent long non-coding RNA 1 (Halr1) are identified as direct downstream targets of RA signaling and regulated by RARA/RXRA via RA response elements (RAREs). Chromosome conformation capture-based screens indicate that RA signaling promotes enhancer interactions essential for Hoxa1 and Halr1 expression and mesendoderm differentiation of ESCs. Furthermore, the results also show that HOXA1 promotes expression of Halr1 through binding to enhancer; conversely, loss of Halr1 enhances interaction between Hoxa1 chromatin and four distal enhancers but weakens interaction with chromatin inside the HoxA cluster, leading to RA signaling-induced Hoxa1 overactivation and enhanced endoderm differentiation. These findings reveal complex transcriptional regulation involving synergistic regulation by enhancers, transcription factors and lncRNA. This work provides new insight into intrinsic molecular mechanisms underlying ESC fate determination during RA signaling-induced early differentiation.


Cell Differentiation , Enhancer Elements, Genetic , Mouse Embryonic Stem Cells/metabolism , Tretinoin/pharmacology , Animals , Cell Line , Cell Lineage , Cells, Cultured , Chromatin Assembly and Disassembly , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/drug effects , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism
10.
Sci Rep ; 11(1): 21846, 2021 11 08.
Article En | MEDLINE | ID: mdl-34750422

Welding fumes induce lung toxicity and are carcinogenic to humans but the molecular mechanisms have yet to be clarified. The aim of this study was to evaluate the toxicity of stainless and mild steel particles generated via gas-metal arc welding using primary human small airway epithelial cells (hSAEC) and ToxTracker reporter murine stem cells, which track activation of six cancer-related pathways. Metal content (Fe, Mn, Ni, Cr) of the particles was relatively homogenous across particle size. The particles were not cytotoxic in reporter stem cells but stainless steel particles activated the Nrf2-dependent oxidative stress pathway. In hSAEC, both particle types induced time- and dose-dependent cytotoxicity, and stainless steel particles also increased generation of reactive oxygen species. The cellular metal content was higher for hSAEC compared to the reporter stem cells exposed to the same nominal dose. This was, in part, related to differences in particle agglomeration/sedimentation in the different cell media. Overall, our study showed differences in cytotoxicity and activation of cancer-related pathways between stainless and mild steel welding particles. Moreover, our data emphasizes the need for careful assessment of the cellular dose when comparing studies using different in vitro models.


Air Pollutants, Occupational/toxicity , Stainless Steel/toxicity , Steel/toxicity , Welding , Air Pollutants, Occupational/chemistry , Animals , Cell Line , Cell Survival/drug effects , Cells, Cultured , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/ultrastructure , Humans , Inhalation Exposure/adverse effects , Lung/drug effects , Lung/metabolism , Mice , Microscopy, Electron, Transmission , Mouse Embryonic Stem Cells/drug effects , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/ultrastructure , Particle Size , Reactive Oxygen Species/metabolism , Stainless Steel/chemistry , Steel/chemistry , Welding/methods
11.
Int J Mol Sci ; 22(18)2021 Sep 15.
Article En | MEDLINE | ID: mdl-34576143

Nitro-oleic acid (NO2-OA), pluripotent cell-signaling mediator, was recently described as a modulator of the signal transducer and activator of transcription 3 (STAT3) activity. In our study, we discovered new aspects of NO2-OA involvement in the regulation of stem cell pluripotency and differentiation. Murine embryonic stem cells (mESC) or mESC-derived embryoid bodies (EBs) were exposed to NO2-OA or oleic acid (OA) for selected time periods. Our results showed that NO2-OA but not OA caused the loss of pluripotency of mESC cultivated in leukemia inhibitory factor (LIF) rich medium via the decrease of pluripotency markers (NANOG, sex-determining region Y-box 1 transcription factor (SOX2), and octamer-binding transcription factor 4 (OCT4)). The effects of NO2-OA on mESC correlated with reduced phosphorylation of STAT3. Subsequent differentiation led to an increase of the ectodermal marker orthodenticle homolog 2 (Otx2). Similarly, treatment of mESC-derived EBs by NO2-OA resulted in the up-regulation of both neural markers Nestin and ß-Tubulin class III (Tubb3). Interestingly, the expression of cardiac-specific genes and beating of EBs were significantly decreased. In conclusion, NO2-OA is able to modulate pluripotency of mESC via the regulation of STAT3 phosphorylation. Further, it attenuates cardiac differentiation on the one hand, and on the other hand, it directs mESC into neural fate.


Cell Differentiation , Mouse Embryonic Stem Cells/cytology , Neurons/cytology , Nitro Compounds/pharmacology , Oleic Acids/pharmacology , Animals , Biomarkers/metabolism , Cell Differentiation/drug effects , Embryoid Bodies/drug effects , Embryoid Bodies/metabolism , Mice , Mouse Embryonic Stem Cells/drug effects , Mouse Embryonic Stem Cells/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Neurons/drug effects , Neurons/metabolism , Organogenesis/drug effects , Pluripotent Stem Cells/drug effects , Pluripotent Stem Cells/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects
12.
Reprod Toxicol ; 106: 18-24, 2021 12.
Article En | MEDLINE | ID: mdl-34547414

2,2',4,4'-Tetrabromodiphenyl ether (BDE47) poses potential risks to reproduction and development, but the mechanism of its toxicity has not yet been elucidated. To explore the developmental toxicity of BDE47, mouse embryonic stem cells (mESCs), which are ideal models for testing the developmental toxicity of environmental contaminants in vitro, were exposed to BDE47 (0.04 µM, 1 µM, 25 µM, or 100 µM) for 24 h or 48 h in this study. Our results indicated that BDE47 treatment changed the morphology of mESCs, inhibited cell viability and increased apoptosis. In addition, alkaline phosphatase (AP) staining in mESCs was significantly decreased after BDE47 treatment (25 µM and 100 µM), indicating that BDE47 treatment affected the pluripotency of mESCs. Through a cell immunofluorescence assay, we found that the fluorescence intensities of Oct4, Sox2 and Nanog were all significantly lower in the group treated with the highest BDE47 concentration (100 µM) than in the control group, consistent with the qRT-PCR and Western blot results. The levels of miR-145 and miR-34a, which regulate genes related to cell differentiation, were significantly increased in BDE47-treated mESCs, further clarifying the potential mechanism. Overall, our findings demonstrate that BDE47 exposure upregulates the expression of miR-145 and miR-34a and in turn downregulates the expression of Oct4, Sox2 and Nanog, thereby affecting apoptosis and pluripotency and causing toxicity during embryonic development.


Halogenated Diphenyl Ethers/toxicity , Mouse Embryonic Stem Cells/drug effects , Alkaline Phosphatase/analysis , Animals , Apoptosis/drug effects , Cells, Cultured , Mice , Mouse Embryonic Stem Cells/enzymology , Mouse Embryonic Stem Cells/physiology
13.
J Biosci ; 462021.
Article En | MEDLINE | ID: mdl-34475317

This study aimed to examine the expression of the genes associated with different development stages of primordial germ cells (PGCs) in differentiating mouse embryonic stem cells (mESCs). The cells were cultured in three groups of control, 10-8 M of all-trans retinoic acid and the combination of 10-7 M of Progesterone and retinoic acid for 7, 12, 17, and 22 days. Immunofluorescent and Quantitative RT-PCR were used to evaluate the effect of progesterone on the differentiation of mESCs into primordial germ cells. RA-treated cells exhibited increased expression of Fragilis, Stella, Dazl, Stra8, Sycp3, and Gdf9 genes and decreased expression of Oct4, Mvh genes compared to the non-treated controls. Furthermore, RA in combination with progesterone (RA?P) led to increased expression of Oct4, Fragilis, Stella, Dazl, Sycp3, Gdf9 and decreased expression of Mvh, and Stra8 genes compared to the RA-treated scenario. Immunofluorescence detection of Stella and Mvh showed that the expression levels of the cells treated with RA+P are much higher than those of the other groups. Our project showed that under the influence of the induced factors, mESCs can spontaneously differentiate into germ cells. Also, the combination of RA+P can enhance and accelerate the differentiation of mESCs into germ cells.


Mouse Embryonic Stem Cells/drug effects , Progesterone/pharmacology , Tretinoin/pharmacology , Animals , Cell Differentiation/drug effects , Gene Expression Regulation, Developmental/drug effects , Germ Cells , Mice , Mouse Embryonic Stem Cells/physiology
14.
J Cell Biol ; 220(9)2021 09 06.
Article En | MEDLINE | ID: mdl-34309628

Extracellular vesicles (EVs) are thought to mediate the transport of proteins and RNAs involved in intercellular communication. Here, we show dynamic changes in the buoyant density and abundance of EVs that are secreted by PC12 cells stimulated with nerve growth factor (NGF), N2A cells treated with retinoic acid to induce neural differentiation, and mouse embryonic stem cells (mESCs) differentiated into neuronal cells. EVs secreted from in vitro differentiated cells promote neural induction of mESCs. Cyclin D1 enriched within the EVs derived from differentiated neuronal cells contributes to this induction. EVs purified from cells overexpressing cyclin D1 are more potent in neural induction of mESC cells. Depletion of cyclin D1 from the EVs reduced the neural induction effect. Our results suggest that EVs regulate neural development through sorting of cyclin D1.


Cyclin D1/genetics , Extracellular Vesicles/metabolism , Mouse Embryonic Stem Cells/metabolism , Neurogenesis/genetics , Neurons/metabolism , Animals , Cell Communication/drug effects , Cell Differentiation/drug effects , Cell Line , Cell Line, Tumor , Cyclin D1/metabolism , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Extracellular Vesicles/chemistry , Gene Expression Regulation , HSC70 Heat-Shock Proteins/genetics , HSC70 Heat-Shock Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/drug effects , Nestin/genetics , Nestin/metabolism , Neurons/cytology , Neurons/drug effects , PAX6 Transcription Factor/genetics , PAX6 Transcription Factor/metabolism , PC12 Cells , Rats , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism , Tretinoin/pharmacology
15.
Genome Biol ; 22(1): 201, 2021 07 09.
Article En | MEDLINE | ID: mdl-34243810

BACKGROUND: Naïve and primed pluripotent stem cells (PSCs) represent two different pluripotent states. Primed PSCs following in vitro culture exhibit lower developmental potency as evidenced by failure in germline chimera assays, unlike mouse naïve PSCs. However, the molecular mechanisms underlying the lower developmental competency of primed PSCs remain elusive. RESULTS: We examine the regulation of telomere maintenance, retrotransposon activity, and genomic stability of primed PSCs and compare them with naïve PSCs. Surprisingly, primed PSCs only minimally maintain telomeres and show fragile telomeres, associated with declined DNA recombination and repair activity, in contrast to naïve PSCs that robustly elongate telomeres. Also, we identify LINE1 family integrant L1Md_T as naïve-specific retrotransposon and ERVK family integrant IAPEz to define primed PSCs, and their transcription is differentially regulated by heterochromatic histones and Dnmt3b. Notably, genomic instability of primed PSCs is increased, in association with aberrant retrotransposon activity. CONCLUSIONS: Our data suggest that fragile telomere, retrotransposon-associated genomic instability, and declined DNA recombination repair, together with reduced function of cell cycle and mitochondria, increased apoptosis, and differentiation properties may link to compromised developmental potency of primed PSCs, noticeably distinguishable from naïve PSCs.


Genomic Instability , Pluripotent Stem Cells/metabolism , Protein Processing, Post-Translational , Retroelements , Telomere Homeostasis , Activins/pharmacology , Animals , Apoptosis/genetics , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Differentiation/drug effects , DNA/genetics , DNA/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Fibroblast Growth Factor 2/pharmacology , Heterochromatin/chemistry , Heterochromatin/metabolism , Histones/genetics , Histones/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Inbred ICR , Mitochondria/genetics , Mitochondria/metabolism , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/drug effects , Mouse Embryonic Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/drug effects , Recombinational DNA Repair , Telomere/metabolism , Telomere/ultrastructure , DNA Methyltransferase 3B
16.
Nucleic Acids Res ; 49(15): 8665-8683, 2021 09 07.
Article En | MEDLINE | ID: mdl-34329458

The protein kinase ATR plays pivotal roles in DNA repair, cell cycle checkpoint engagement and DNA replication. Consequently, ATR inhibitors (ATRi) are in clinical development for the treatment of cancers, including tumours harbouring mutations in the related kinase ATM. However, it still remains unclear which functions and pathways dominate long-term ATRi efficacy, and how these vary between clinically relevant genetic backgrounds. Elucidating common and genetic-background specific mechanisms of ATRi efficacy could therefore assist in patient stratification and pre-empting drug resistance. Here, we use CRISPR-Cas9 genome-wide screening in ATM-deficient and proficient mouse embryonic stem cells to interrogate cell fitness following treatment with the ATRi, ceralasertib. We identify factors that enhance or suppress ATRi efficacy, with a subset of these requiring intact ATM signalling. Strikingly, two of the strongest resistance-gene hits in both ATM-proficient and ATM-deficient cells encode Cyclin C and CDK8: members of the CDK8 kinase module for the RNA polymerase II mediator complex. We show that Cyclin C/CDK8 loss reduces S-phase DNA:RNA hybrid formation, transcription-replication stress, and ultimately micronuclei formation induced by ATRi. Overall, our work identifies novel biomarkers of ATRi efficacy in ATM-proficient and ATM-deficient cells, and highlights transcription-associated replication stress as a predominant driver of ATRi-induced cell death.


Ataxia Telangiectasia Mutated Proteins/genetics , Cyclin C/genetics , Cyclin-Dependent Kinase 8/genetics , Transcription, Genetic , Animals , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Cell Line, Tumor , DNA Damage/drug effects , DNA Repair/drug effects , DNA Replication/drug effects , Humans , Mice , Mouse Embryonic Stem Cells/drug effects , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects
17.
Reprod Toxicol ; 104: 76-84, 2021 09.
Article En | MEDLINE | ID: mdl-34280493

Fludioxnil is extensively used as a fungicide in agricultural application, but its possible impact on embryonic development is not yet well understood. In this study, the potential effect of fludioxonil on cardiac differentiation was evaluated in mouse embryonic stem cells (mESCs). The water-soluble tetrazolium (WST) and colony formation assays were conducted to confirm the effect of fludioxonil on proliferation of mESCs. The effect of fludioxonil on the ability of mESCs to form mouse embryoid bodies (mEBs) was determined by the hanging drop assay, whereas the ability of cardiomyocyte differentiation in the early stage was evaluated by determining the beating ratio (ratio of the number of contracting cells to the number of attached EBs) of cardiomyocytes. The viability of mESCs was significantly decreased (less than 50 %) at 10-5 M fludioxonil. Results of the colony formation assay revealed suppressed colony formation at 10-5 M fludioxonil (about 50 % at 5 days). Furthermore, the expressions of cell-cycle related proteins, i.e., cyclin D1, cyclin E, p21 and p27, were altered and trending towards inhibiting cell growth. Exposure to fludioxonil also resulted in reduced size of the mEB and induced increasing expression levels of the pluripotency markers Oct4, Sox2 and Nanog. Development of the beating ratio in the process of differentiation to cardiomyocytes derived from mESCs was completely inhibited after exposure to 10-5 M fludioxonil during the early stage of differentiation (day 5), whereas the beating ratio gradually increased after 5-day treatment. Simultaneously, expressions of the cardiomyocyte-related proteins, Gata4, Hand1 and cTnI, were inhibited after exposure to 10-5 M fludioxonil. Taken together, these results imply that fludioxonil may impact on the developmental process of mESCs, particularly the cardiac lineage.


Cell Differentiation/drug effects , Dioxoles/toxicity , Fungicides, Industrial/toxicity , Pyrroles/toxicity , Animals , Cell Line , Cell Proliferation , Embryoid Bodies/drug effects , Embryonic Stem Cells/drug effects , Gene Expression Regulation, Developmental , Mice , Mouse Embryonic Stem Cells/drug effects , Mouse Embryonic Stem Cells/physiology , Myocytes, Cardiac/drug effects , Organogenesis
18.
Int J Mol Sci ; 22(14)2021 Jul 07.
Article En | MEDLINE | ID: mdl-34298943

Graphene oxide (GO) is a biocompatible material considered a favorable stem cell culture substrate. In this study, GO was modified with polydopamine (PDA) to facilitate depositing GO onto a tissue culture polystyrene (PT) surface, and the osteogenic performance of the PDA/GO composite in pluripotent embryonic stem cells (ESCs) was investigated. The surface chemistry of the PDA/GO-coated PT surface was analyzed by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). A high cell viability of ESCs cultured on the PDA/GO composite-coated surface was initially ensured. Then, the osteogenic differentiation of the ESCs in response to the PDA/GO substrate was assessed by alkaline phosphatase (ALP) activity, intracellular calcium levels, matrix mineralization assay, and evaluation of the mRNA and protein levels of osteogenic factors. The culture of ESCs on the PDA/GO substrate presented higher osteogenic potency than that on the uncoated control surface. ESCs cultured on the PDA/GO substrate expressed significantly higher levels of integrin α5 and ß1, as well as bone morphogenetic protein receptor (BMPR) types I and II, compared with the control groups. The phosphorylation of extracellular signal-regulated kinase (ERK)1/2, p38, and c-Jun-N-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs) was observed in ESCs culture on the PDA/GO substrate. Moreover, BMP signal transduction by SMAD1/5/8 phosphorylation was increased more in cells on PDA/GO than in the control. The nuclear translocation of SMAD1/5/8 in cells was also processed in response to the PDA/GO substrate. Blocking activation of the integrin α5/ß1, MAPK, or SMAD signaling pathways downregulated the PDA/GO-induced osteogenic differentiation of ESCs. These results suggest that the PDA/GO composite stimulates the osteogenic differentiation of ESCs via the integrin α5/ß1, MAPK, and BMPR/SMAD signaling pathways.


Cell Differentiation/drug effects , Graphite/pharmacology , Indoles/pharmacology , Mouse Embryonic Stem Cells/drug effects , Osteogenesis/drug effects , Polymers/pharmacology , Animals , Cell Culture Techniques , JNK Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System/drug effects , Mice , Mouse Embryonic Stem Cells/metabolism , Signal Transduction/drug effects
19.
Int J Mol Sci ; 22(10)2021 May 14.
Article En | MEDLINE | ID: mdl-34069142

Bone healing is a complex, well-organized process. Multiple factors regulate this process, including growth factors, hormones, cytokines, mechanical stimulation, and aging. One of the most important signaling pathways that affect bone healing is the Notch signaling pathway. It has a significant role in controlling the differentiation of bone mesenchymal stem cells and forming new bone. Interventions to enhance the healing of critical-sized bone defects are of great importance, and stem cell transplantations are eminent candidates for treating such defects. Understanding how Notch signaling impacts pluripotent stem cell differentiation can significantly enhance osteogenesis and improve the overall healing process upon transplantation. In Rancourt's lab, mouse embryonic stem cells (ESC) have been successfully differentiated to the osteogenic cell lineage. This study investigates the role of Notch signaling inhibition in the osteogenic differentiation of mouse embryonic and induced pluripotent stem cells (iPS). Our data showed that Notch inhibition greatly enhanced the differentiation of both mouse embryonic and induced pluripotent stem cells.


Amyloid Precursor Protein Secretases/antagonists & inhibitors , Cell Differentiation/drug effects , Osteogenesis/genetics , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/drug effects , Animals , Bone and Bones/metabolism , Cell Cycle Proteins/genetics , Cell Differentiation/physiology , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Dexamethasone/pharmacology , Diamines/pharmacology , Gene Expression Regulation/drug effects , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/physiology , Mesoderm/cytology , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/drug effects , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/physiology , Osteogenesis/drug effects , Pluripotent Stem Cells/metabolism , Receptors, Notch/metabolism , Thiazoles/pharmacology , Transcription Factor HES-1/genetics , Vitamin D/pharmacology
20.
Int J Nanomedicine ; 16: 3819-3832, 2021.
Article En | MEDLINE | ID: mdl-34121840

INTRODUCTION: Embryonic stem cells (ESCs) possess great application prospects in biological research and regenerative medicine, so it is important to obtain ESCs with excellent and stable cellular states during in vitro expansion. The feeder layer culture system with the addition of leukemia inhibitory factor (LIF) is currently applied in ESC cultures, but it has a series of disadvantages that could influence the culture efficiency and quality of the ESCs. With the development of nanotechnology, many studies have applied nanomaterials to optimize the stem cell culture system and regulate the fate of stem cells. In this study, we investigated the layer-number-dependent biofunction of graphene oxide (GO) on the pluripotency of ESCs from mice (mESCs). METHODS: Single-layer GO (SGO) and multi-layer GO (MGO) were characterized and their effects on the cytotoxicity and self-renewal of mESCs were detected in vitro. The differentiation potentials of mESCs were identified through the formation of embryoid bodies and teratomas. The regulatory mechanism of GO was verified by blocking the target receptors on the surface of mESCs using antibodies. RESULTS: Both SGO and MGO were biocompatible with mESCs, but only MGO effectively sustained their self-renewal and differentiation potential. In addition, GO influenced the cellular activities of mESCs by regulating the interactions between extracellular matrix proteins and integrins. CONCLUSION: This work demonstrates the layer-number-dependent effects of GO on regulating the cell behavior of mESCs and reveals the extracellular regulatory mechanism of this process.


Extracellular Matrix/metabolism , Graphite/pharmacology , Integrins/metabolism , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Animals , Apoptosis/drug effects , Cell Differentiation/drug effects , Cell Self Renewal/drug effects , Cell Survival/drug effects , Extracellular Matrix/drug effects , Extracellular Matrix Proteins/metabolism , Mice , Mouse Embryonic Stem Cells/drug effects , Mouse Embryonic Stem Cells/ultrastructure , Oxidative Stress/drug effects
...